Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

نویسندگان

  • Wei Ji
  • Sahibzada Shakir Rehman
  • Weimin Wang
  • Hao Wang
  • Yucheng Wang
  • Jinyong Zhang
  • Fan Zhang
  • Zhengyi Fu
چکیده

A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Silicon Carbide and graphite additives on the pressureless Sintering mechanism and microstructural characteristics of Ultra-High Temperature ZrB2 Ceramics Composites

The effect of SiC content, additives, and process parameters on densification and microstructural properties of pressureless sintered ZrB2– (1–10 wt %) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by Spex mixer with 1-2wt% C (added as graphite powder) and CMC have been cold-compacted and sintered in argon environment in the temperature range of 1800–2100ºC ...

متن کامل

Comparison of Creep Behavior in Alumina Based Ceramics Densified by Spark Plasma Sintering and Hot Pressing

Spark plasma sintering (SPS) method, as plasma activated sintering, is a method applicable for rapid sintering of metals and ceramics. Owing to the advantage of rapid heating, the alumina ceramics obtained by SPS have a grain size and density comparable to those of hot pressed ones. The increase of densification rate may be related to some difference in ion transport characteristics. This study...

متن کامل

Densification Kinetics and Structural Evolution During Microwave and Pressureless Sintering of 15 nm Titanium Nitride Powder

Microwave sintering (MWS) of commercially available 15-nm-size nanocrystalline TiN powder was studied. Densification kinetics and grain growth mechanisms of nano-TiN were evaluated using non-isothermal heating up to 1500 °C with variable heating rates. A true nanocrystalline ceramic with ~80-nm-size grains and 94.5 % theoretical density was obtained via MWS consolidation at 1400 °C. At higher t...

متن کامل

Effect of Interface Structure on the Microstructural Evolution of Ceramics

The interface atomic structure was proposed to have a critical effect on the microstructure evolution during sintering of ceramic materials. In liquid-phase sintering, spherical grains show the normal grain growth behavior without exception, while angular grains often grow abnormally. The coarsening process of spherical grains with a disordered or rough interface atomic structure is diffusion-c...

متن کامل

Evaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015